

Socio-economic aspects of centralized co-digestion.

Lars Henrik Nielsen, Risoe National Laboratory, Technical University of Denmark

PROBIOGAS: Promotion of Biogas for Electricity and Heat Production in EU Countries -Economic and Environmental Benefits of Biogas from Centralized Co-digestion, An IEEA - ALTENER project.

European Biogas Workshop: The Future of Biogas in Europe III 14-16 June 2007, Esbjerg – Denmark

RISØ

Centralized biogas plant concept analysed (Dagens Biogas-anlæg)

Socio-economic aspects

RISØ

Split on levels termed: Result 0,1,2,3

Level of analysis:	Result 0	Result 1	Result 2	Result 3
Aspects included:				
Energy and resources: Value of energy production (biogas, electricity, heat) Capacity savings related to grids Security of energy supplies and political stability issues Resource savings (energy and nutrients) Global balance of trades Infrastructure costs / roads,	R0 R0	R0 R0	R0 R0	R0 R0 (R3)
Environment Value of GHG reduction (CO_2 , CH_4 and N_2O) Other emissions (SO_2 , NO_x ,) Savings related to organic waste treatment and recycling Value of reduced N-eutrophication of ground water: Value of reduced obnoxious smells 		R1	R2 R1 R2*	R2 R1 R2* R3
Agriculture Storage, handling and distribution of liquid manure: Flexibility gains at associated farms Value of improved manurial value (NPK) Veterinary aspects		R1 R1	R1 R1	R1 R1
Investments and O&M-costs: Investments. Biogas Plant & CHP O&M of Biogas Plant , incl. CHP unit for process heat Investments and O&M for liquid manure transport Other aspects Employment effects Working environment aspects, helth and comfort	R0 R0 R0	R0 R0 R0	R0 R0 R0	R0 R0 R0

DTU Market prices and externalities

RISØ

Externalities: Socio-economic costs and benefits not reflected in market prices

"Socio-economic price" = Market price + External costs/benefits

Methods for monetising external effects:

- Preference-based methods

 E.g. via virtual markets that reveal market-preferences
 (Interview investigations: How much will people pay to avoid an external effect.)
 Theoretical preferable. However, data often not available.
- Cost-based methods

Focus on damage costs due to the external effect. (Repair of damage, loss of production value, medical costs et.c.) May not reveal all external costs.

Monetising via: Costs for avoiding / removing the negative external effect

RISO Treatment capacity and estimated energy production.

	F	IRL	SP	GR	В	NL
Treatment capacity:						
1000 ton /year	44	53	168	34	75	220
Treatment capac	ity:					
ton /day	120	144	460	93	200	600
Biogas yield:						
mil m3 CH4/y	1,6	1,1	4,4	1	1,5	6,4
Biogas yield:						
m3 CH4/t	37	21	26	30	20	29
Electricity:						
1000 MWh/y	5,9	4	16	3,7	7,9	23
Heat:						
1000 MWh/y	7,5	4,6	23	5,2	7,9	34

Basic socio-economic assumptions

Rate of interest: 6% p.a. Sensitivity on 4% p.a. and 10% p.a.
 Base year: Year 2005
 Period analysed: Year 2005-2025

 Time horizon
 Year 2025
 Terminal values: Via annuity until time horizon.

 Re-investments: Identical re-investments at life times below time horizon.
 Price level: Fixed year 2005 price level.

(NB: factor-prices Ex. tax, subsidies et.c.)

• Fuel prices: Based on IEA-forecasts covering the period

(Adjusted according to the oil price rise seen, - but IEA data from 2010)

• Electricity prices: Nordpool ex. estimated CO2-price element

Annual socio-economic costs and benefits for the CAD alternatives, levelised annuities.

	F	IRL	SP	GR	В	NL
Per day treatment capacity, tons	120	144	460	93	200	600
Methane yields, m3 CH4/ton biomass	37	21	26	30	20	29
Costs:		1	,000,000 Ei	uro /Year		
Investments:						
-Biogas plant	0.389	0.388	0.493	0.249	0.359	0.574
-CHP plant	0.049	0.038	0.109	0.025	0.044	0.185
Operation and maintenance						
-Biogas production	0.284	0.285	0.413	0.180	0.278	0.566
-Vehicle fuel	0.013	0.004	0.061	0.006	0.027	0.071
-Transport costs (excl. fuel)	0.104	0.137	0.456	0.036	0.132	1.374
Sum	0.839	0.852	1.532	0.496	0.840	2.770
Benefits:		1	,000,000 Ei	uro /Year		
Energy production						
-Electricity sales	0.190	0.136	0.479	0.126	0.355	0.785
-Heat sales	0.188	0.093	0.000	0.000	0.088	0.000
Agriculture						
-Storage and handling of manure	-0.014	-0.036	0.000	0.000	-0.025	-0.037
-Improved fertilizer value (NPK)	0.016	0.021	0.160	0.076	0.087	0.308
-Transport savings at farms	0.000	-0.027	0.000	0.004	-0.006	1.066
 Veterinary aspects (not quantified) 						
Industry						
-Savings in organic waste treatment	0.182	0.235	0.104	0.278	0.062	0.000
Environment						
-Value of green house gas reduction	0.165	0.096	0.399	0.114	0.078	0.631
-Value of reduced Nitrogen losses	0.051	0.038	0.166	0.037	0.061	0.347
-Value of reduced obnoxious odours	0.017	0.017	0.083	0.008	0.026	0.108
Sum	0.795	0.573	1.391	0.643	0.726	3.208
Socioeconomic surplus:	-0.044	-0.279	-0.140	0.147	-0.114	0.438

DTU RISO Reduced N leakage to ground water / Danish data !

	F	IRL	SP	GR	В	NL
Per day treatment capacity: tons/day	120	144	460	93	200	600
Reduced leakage: ton N / year	15.3	11.1	49.4	11.2	18.2	103.3
Monetised value of reduced leakage: €/year	51500	38000	166000	37611	61000	347000

Reduced leakage: 25 % of saved chemical N fertilizer.

Monetised value 3,4 €/kg N reduced leakage (ref. Brian Jacobsen, Økonomisk midtvejsevaluering, Vandmiljøplan II, dec.2000)

DTU Green House Gasses included

IPCC-defined GHGs and GWP cf. 2. Assessment Report (SAR) :

- CO_2 , $GWP_{100}=1$ (weight based)
- CH_4 , $GWP_{100} = 21$
- N_2O , $GWP_{100} = 310$

GWP₁₀₀: Global Warming Potential covering 100 years

Other GHGs are not important in relation to biogas plants

Quantify changed emission of:

Carbon dioxide, methane and laughing gas due to the biogas alternatives

Value of GHG emission reduction:

 National Quotas and a market for CO2 emission allowances

 EU-project ExternE (damage costs):
 3.8-139 €/ton CO2

 EU aim for 'CO2 capture and sequestration':
 30 / 20 €/ton CO2

 PCF(JI,CDM)/ World Bank. GHG Price 2006 about:
 ~ 10 \$/ton CO2

 NordPool (CO2 emission allowance). Market price: ~ 0.5 \$/ton CO2(2007)
 ~ 20-21\$/ton CO2(2008-12)

 The present analysis (cf. Danish Energy Authority. 2007):
 20 €/ton CO2(150DKK/ton CO2)

RISØ

Estimated annual Green House Gas reduction in the case studies.

	F	IRL	SP	GR	В	NL
Per day treatment capacity, tons	120	144	460	93	200	600
Ton CO2 or CO2 eqv.						
Electricity sales	3575	1856	10823	2320	1762	15386
Heat sales	2637	1217	0	0	920	0
NPK substitution	622	299	1909	453	742	3932
Transport fuel	-99	-32	-454	-44	-201	-531
Total from energy substitution	6735	3340	12278	2729	3223	18787
CH4, Ton CO2 eqv						
Animal manure	336	6	2163	840	219	7308
Organic waste	630	183	105	1848	122	0
CHP plant, unburnt	-378	-273	-1134	-252	-226	-1575
Total from reduced CH4 emissions	582	-78	1124	2436	115	5726
N2O, Ton CO2 eqv.						
Manure and waste	839	446	6365	465	507	6737
Total reduction in ton CO2 eqv	8155	3709	19767	5630	3845	31250
CO2 reduction, ton CO2 eqv/ton biomass	0.186	0.071	0.118	0.166	0.051	0.142

DTU RISO For Break-Even Green House Gas (GHG) reduction costs

	F	IRL	SP	GR	В	NL
Per day treatment capacity, tons/day	120	144	460	93	200	600
Euro / ton CO2 eqv.						
GHG reduction costs, €/ton CO ₂	26	79	27	-6	50	6

NordPool (CO2 emission allowance)

Market price:

~ 0.5 \$/ton CO2 (2007) ~ 20-21 \$/ton CO2 (2008-12)

	F	IRL	SP	GR	В	NL
Per day treatment capacity, tons/day	120	144	460	93	200	600
Euro / kWh						
Electricity production costs, €/kWh	0,042	0,104	0,044	-0,006	0,071	0,015

Electricity price 2006-2025 ?	
Average Nordpool market price assumed (inclusive CO2 cost element): Nordpool market price assumed (exclusive CO2 cost element): (Levellized for 2006-2025)	0.0417 EUR/kWh 0.0341 EUR/kWh
Transmission cost compensation not included ?	

Main socio-economic conclusions

DTU

- Two out of six cases are found to be socio-economically profitable when all quantified externalities are taken into account.
- Another three plants are close to Break-Even, and would certainly be profitable if they were given more favourable conditions, i. e. if existing barriers were removed.
- Lack of heat markets in some cases reduce the potential benefits (from energy substitution, CO2-emission reduction and economy)
- In general organic waste contributes largely to the socio-economic benefits, and several cases would benefit greatly from additional waste input.

Admixture of organic waste important:

Combined benefits on e.g. biogas production, savings on organic waste treatment, improved manurial value (NPK) and increased CO_2 reduction.

• Due to the lack of case-specific data some environmental benefits are based on Danish data. Therefore some of these estimates are relatively uncertain.

(A number of externalities have not been quantified for the analysis. Most expected in favour for Biogas)